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bstract

The paper presents a Bayes’ method for augmenting generic equipment failure data with a prior distribution – predicated on the evidence, e.g.,
lant data – resulting in a posterior distribution. The depth of the evidence is significant in shaping the characteristics of the posterior distribution. In
onditions of insufficient data about the prior distribution or great uncertainty in the generic data sources, we may use “constrained non-informative

riors”. This representation of the prior preserves the mean value of the failure rate estimate and maintains a broad uncertainty range to accommodate
he site-specific event data. Although the methodology and the case study presented in this paper focus on the calculation of a time-based (i.e.,
ailures per unit time) failure rate, based on a Poisson likelihood function and the conjugate gamma distribution, a similar method applies to the
alculation of demand failure rates utilizing the binomial likelihood function and its conjugate beta distribution.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The well-established quantitative risk analysis methodology
1] begins with the task of hazard analysis (e.g., HAZOP) in
hich potential hazardous events (scenarios) are identified. The

cenarios provide the answer to the question of “what could
appen?” There are other questions still need responses: “how
ften?” and “what is the impact?” Each scenario has two dimen-
ions frequency and consequence. The risk of each scenario –
o certain population, the environment or the asset – is the prod-
ct of frequency and severity of consequence associated with
he scenario. The total risk posed by the plant is therefore the
ntegration of the scenario risks. Garrick and Kaplan in a classic
aper [2] provide a quantitative definition of risk in terms of the
dea of a “set of triplets”. The definition is extended to include
ncertainty and completeness, and the use of Bayes’ theorem is
escribed in this connection. The definition is used to discuss
he notions of relative risk, and acceptability of risk.

Equipment failure rates are a main ingredient in any risk or

eliability analysis. In a risk analysis, the failure data is needed
o estimate the frequencies of events contributing to risks posed
y a facility. And in a reliability analysis, they are required to

∗ Tel.: +1 281 673 2776.
E-mail address: ashafaghi@absconsulting.com.

i
w
l
m

n
c

304-3894/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2008.01.042
isson distribution; Gamma distribution; Conjugate gamma distribution

redict an unavailability or unreliability of a system. But, the
uestion is where are we going to get the data from? There are
wo sources of hard data: data collected at a facility – “plant
pecific” – and data reported by industry – “generic” data. One
f the sources of plant specific data is work orders. Unless it is
esigned for the purpose, work orders are inherently inconsistent
nd in some cases convoluted.

Now suppose you are conducting a risk assessment study of
plant, which consists of, say, 13 pressure vessels among other
quipment items and it has been in operation for 10 years. To
ramatize the situation let us assume that the plant has zero
umber (or any number) of pressure vessel failure (of any kind)
ince the startup. In other words the plant has zero failure in 130
ressure-vessel-years. Now, is it justifiable to use this informa-
ion for estimating the risk associated with the pressure vessels
t this plant?

Generic data, which are publicly available, e.g., for the chem-
cal process industry [3], for the nuclear industry [4], and for
he offshore installation [5], which represent a cross-section of
ndustry. From statistical point of view, most of these sources
ill provide you with valid point estimates and occasionally

ower and upper bound values. However, generic data suffers a

ajor shortcoming, which is non-specific.
Although both approaches provide you with some estimates,

either could produce representative equipment failure frequen-
ies. This is because plant specific data is statistically invalid
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ue to a short duration of data collection or limited population
f equipment. Generic data, on the other hand, does not reflect
he characteristics and conditions of the plant that the equipment
s operated under. Hence the use of plant specific or generic data
ould not to help estimate realistic risk or reliability of a plant.
There is a third way, which is often known as data augmen-

ation, which is performed using the Bayesian methodology. In
his approach we use generic data as a priori and plant specific
ata as an evidence (likelihood) to obtain posterior.

. Bayesian updating methodology

Bayesian statistics is based on the subjective definition of
robability as ‘degree of belief’ and on Bayes’ theorem, the
asic tool for assigning probabilities to hypotheses combining a
rior judgments and experimental information [6].

The approach presented is known as two-step Bayesian
ethodology [7]. There are many sources of information on
ayes’ theory and applications. The two outstanding books by
inkler [8] and Janes [9] are among the best sources of Bayes’

heorem. Winker’s is on inference and decision making while
anes’ book has been the trademark of Bayesian methodology
n the risk community.

The approach consists of three main tasks, as follows:

. Define a prior distribution for the equipment failure rate.

. Gather evidence, known as the likelihood function.

. Construct the posterior distribution using Bayes’ theorem.

In the context of failure rate estimation, the Bayes’ theorem
s presented in a functional relationship, as follows:

post(λ) ∝ likelihood(λ)fprior(λ) (1A)

r

post(λ) ∝ Pr(X = x|λ)fprior(λ) (1B)

here λ = equipment failure rate; fprior(λ) = posterior distribu-
ion of failure rate (λ); likelihood (λ) = likelihood function of
ailure rate (λ); Pr(X = x|λ) = likelihood function as function of
, for given failure event (x); fpost(λ) = posterior distribution of
ailure rate (λ).

The choice of the prior distribution signifies the analyst’s
tate of knowledge regarding the equipment failure rate. The
rior distribution may be derived from a single source, or from a
ollection of available sources. In failure rate estimation, often
eneric data is used as the basis for the prior distribution. In
ase hard data is not available or not from a reputable source,
xpert opinions may be used to define a prior. Expert opinion
s acquired by special techniques such as the Delphi method

10].

Evidence is based on the statistics collected at a specific facil-
ty. If the evidence were too limited, then the posterior would
esemble the prior. It is significant to remember that the evidence
ust be independent of the prior. As the historical data becomes

arger, several patterns emerge [15]:

t
l
(

f
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The posterior distribution bears less resemblance to the prior
distribution, because the data become the dominant factor.
The posterior would be narrower and centered around max-
imum likelihood estimate, implying less uncertainty in the
results.

.1. Choice of prior distribution and likelihood function

Let us first start with the likelihood function, which is best
efined by the Poisson distribution defining the behavior of the
acility failure data. This is an appropriate distribution for ran-
om variables that involve counts or events (such as pressure
essel failure) per unit time.

The Poisson distribution is presented below:

r(X = x|λ) = e−λt(λt)x

x!
(2)

here x = number of events (failures); t = time interval.
The conjugate family of prior distributions for Poisson data

s the family of gamma distributions. That is to say the uncer-
ainty of the failure rate (λ) is defined by the gamma distribution.
he gamma distribution and the event data can be combined to

esult in another gamma distribution. This is the meaning of the
onjugate family.

In the context of Bayes’ theorem, when we choose the gamma
istribution for the prior, updating it by the Poisson likelihood
odel, then the posterior distribution is also constructed by the

amma distribution.
The gamma distribution for the prior with two parameters of

cale factor (α) and the shape factor (β), which is shown below:

prior(λ) = βα

(α − 1)!
λα−1e−λβ (3A)

xpression (3A) can also be presented as:

prior(λ) ∝ λα−1e−λβ (3B)

ote that this expression is valid only when α takes a positive
alue.

This is known as the gamma (α,β) distribution, where the
ean and variance are defined as follows:

ean (λ) = α

β
(4)

ariance (λ) = α

β2 (5)

.2. Posterior distribution

Using the gamma distribution for the prior and Poisson for the
ikelihood, the updated distribution is also a gamma distribution.
he resulting posterior distribution, which is a combination of

he prior gamma distribution and Poisson distribution for the

ikelihood function, is also the gamma distribution, given in Eq.
4), which defines conjugate:

post ∝ e−λt (λt)x

x!
λα−1e−λβ (6A)
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implified further, results in:

post ∝ λ(x+α)−1e−λ(t+β) (6B)

he posterior gamma distribution parameters are simply calcu-
ated by the following equations:

post = x + αprior (7)

post = t + βprior (8)

qs. (7) and (8) along with Eq. (4) (the mean) are the primary
ools for the Bayesian update in this study.

Based on Atwood’s [17] priors, for Poisson data, the con-
trained non-informative prior is a gamma distribution with the
hape factor and scale factor of the following values:

prior = 1

2
(9)

prior = αprior/prior mean (10A)

prior = 1/2 (prior mean) (10B)

iven the best estimate for mean value of failure rate (from
eneric data), then the parameters of the gamma prior distribu-
ion, αprior and βprior, will be calculated according to Eqs. (9),
10A) and (10B).

. Case study

The remainder of this paper focuses on the use of the method-
logy described above to estimate pressure vessel failure rates
or several failure modes.

.1. Prior distribution

Once the prior distribution is known it is required to estimate
ts parameters, e.g., the mean value. The quality and quantity
f generic data as well as the analyst’s preference dictate the

ethod of generating the parameters. The analyst may have

ccess to a single or multiple credible data sources. In the mul-
iple source case, the analyst may simply choose to select the

ost reliable, or employ one of a number of methods to merge

d
c
c

able 1
ressure vessel failure mode generic data and assigned range factors and probabilitie

ource Disruptive (per year) Non-dis

avannah River Site [13] 3.33E−04 3.24E−
EI-TVA [12] 3.00E−04 1.70E−
EI Boiler Drum [12] 1.40E−04 2.00E−
hemical [14] 5.48E−05 1.05E−
K Steam Drum Sample [12] 5.00E−05 6.00E−

RS-TUW [12] 4.50E−05 6.00E−
BBPV [12] 3.50E−05 –a

K-Smith& Warwick [12] 3.20E−05 2.60E−
CPS [3] 9.55E−06 5.57E−
erman LWR Study Group [13] 8.80E−06 –a

BMA [13] 4.20E−06 –a

ijnmond [16] 1.00E−06 1.00E−
a These sources have reported no frequencies for the non-disruptive.
b Weight factors are calculated using ranged factors and are normalized.
Materials 159 (2008) 87–91 89

hese data into a single point estimate. The methods range from
alculation of an arithmetic mean to the use of sophisticated
ayesian procedures [11].

For the purpose of this analysis, we have searched various
eneric data sources applicable to pressure vessels; the results
re given in Table 1. The mean values in Table 1 are taken directly
rom the referenced data sources given in the table. The data
ncludes “disruptive” and “no-disruptive” failure modes. The
efinitions of the terms used in Table 1 are given below:

Disruptive failure—“a breaching of the vessel by failure of the
shell, head, nozzles or bolting, accompanied by a rapid release
of the large volume of the contained pressurized fluid” [12].
Non-disruptive failure—“a condition of crack growth rate or
flaw size that is corrected, and which if it had not been cor-
rected, could have reached a critical size and led to disruptive
vessel failure” or “a local degradation of the pressure ves-
sel boundary that is localized cracking with or without minor
leakage. Such a crack would not reach critical size and lead
to disruptive vessel failure” [12].
Range factor—the range factor implies the level of confidence
that the analyst has in the data source. The smaller the range
factor, the higher the confidence of the analyst in the data
source. For the gamma distribution, the range factor can be
estimated by the square root of the ratio of the 95th percentile
value to the 5th percentile value.

Based on the analyst’s (the author’s) level of confidence in
ach source, a range factor and a probability (weight) have
een assigned to each source in Table 1. The data reported by
ush has received a small range factor, relative to the other

ources, because of the analyst’s high level of confidence in this
ource. On the other hand, data reported in Rijnmond report was
ssigned a range factor of 9, indicating a lower level of confi-
ence in this data source. The probability weights also represent
he analyst’s confidence in each data source.
Using the data given in Table 1, we have calculated prior
istribution mean values (Table 2) using different method for
omparison purposes. In this study we will use the mean values
alculated using weighted average method.

s

ruptive (per year) Assigned range factor Weight factorsb

03 7 0.05
03 4 0.08
04 4 0.08
04 3 0.11
04 3 0.11
04 3 0.11

3 0.11
04 4 0.08
05 5 0.07

4 0.08
4 0.08

05 9 0.04



90 A. Shafaghi / Journal of Hazardous Materials 159 (2008) 87–91

Table 2
Calculated prior distribution mean values for pressure vessel failure modes
(alternate methods)

Method of calculation Disruptive
(per year)

Non-disruptive
(per year)

Arithmetic mean (average) 8.40E−05 7.50E−04
Geometric mean 3.10E−05 4.10E−03
Weighted averagea 7.70E−05 4.80E−04
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Table 4
Prior and posterior parameters for pressure vessel failure modes

Gamma
distribution
parameters

Disruptive Non-disruptive

Prior Posterior Prior Posterior

α 0.5 0.5 0.5 7.5
β 6536 9341 1048 3853
λ (per year) 7.70E−05 5.40E−05 4.80E−04 2.00E−03
5th percentile

(per year)
4.40E−05 3.10E−05 2.10E−05 9.20E−04
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ayesian [7] 6.70E−05 6.00E−04

a Used in the case study.

Using the data given in Table 1, we have calculated prior
istribution mean values (Table 2) using different method for
omparison purposes. In this study we will use the mean values
alculated using weighted average method.

.2. Plant specific data

A hypothetical case is used to demonstrate the data analy-
is method presented in this paper. Consider company XYZ, a
orldwide gas and oil firm, has collected pressure vessel fail-
re data for their facilities for the past 15 years. The number
f pressure vessels in operation is 187. The history has shown
ero disruptive and seven non-disruptive failures for the past 15
ears among the 187-pressure vessel population. Table 3 shows
he evidence that will be used to update the generic data (prior).

.3. Data updating

Using the constrained non-informative gamma distribution
15], the parameters of the prior distribution for the disruptive
ressure vessel failure mode are calculated as follows:

Dis
Prior = 0.5

Dis
Prior = 0.5/7.7E − 05 = 6536

he posterior gamma distribution parameters are calculated:

Dis
Post = 0 + 0.5 = 0.5

Dis
Post = 15 × 187 + 6536 = 9341

he posterior mean is then calculated as:

λDis
Post = 0.5/9341 = 5.4E − 05
(events per year; disruptive failure mode)

ollowing the same steps for non-disruptive failure mode, we
ould get the following mean value for posterior distribution of

able 3
lant specific data for the case study

oisson parameters Disruptive Non-disruptive

(number of failures) 0 7
(time interval) 15 15

t
p
a
t
l

R

5th percentile
(per year)

2.70E−04 1.90E−04 1.70E−03 3.20E−03

he non-disruptive failure mode:

λN-Dis
Post = 2.0E − 03

(events per year; non-disruptive failure mode)

able 4 presents calculated distribution parameters of disrup-
ive and non-disruptive pressure vessel failure modes for the
xample.

. Conclusions

The method starts with a prior distribution, which must come
rom sources independent from the subject plant under study.
n appropriate source is generic data reported in the literature
r used in other studies. The issue with data reported in the
iterature is that it is mostly incomplete and often presented in
erms of “point estimates”, which are single values representing
he mean (or median) of the failure rate.

The depth of the evidence, e.g., plant data, is significant
n shaping the characteristics of the posterior distribution. As
hown in the case study, due to lack of disruptive failure at
he plant the posterior mean (5.40E−05) is very close to that
f the prior (7.70E−05). In comparison, the number of non-
isruptive failure was relatively large, hence the difference
etween the prior and posterior means are almost an order of
agnitude.
In conditions of insufficient data (incomplete prior knowl-

dge) about the prior distribution or great uncertainty in the
eneric data sources, we may use “constrained non-informative
riors” described by Atwood [17]. This representation of the
rior preserves the mean value of the failure rate estimate and
aintains a broad uncertainty range to accommodate the site-

pecific event data.
Although the methodology and the case study presented in

his paper focus on the calculation of a time-based (i.e., failures
er unit time) failure rate, based on a Poisson likelihood function
nd the conjugate gamma distribution, a similar method applies
o the calculation of demand failure rates utilizing the binomial
ikelihood function and its conjugate beta distribution.
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